aber ich denke du hast bei den Mosfets der Schaltwandler regelmäßig Source mit Drain vertauscht, was für einige Verwirrung sorgen könnte.
Wie kommst Du darauf?
Source sind immer die Anschlüsse 1-3.
Gate ist immer Pin 4.
Drain sind immer die Pins 4-8.
Alles unabhängig vom Kanaltypen.
In Schaltwandlern sind immer N-Kanal Typen bestückt. Und da gilt:
Drain wird normalerweise mit der "positiveren" Spannung verbunden und der durchsteuernde MOSFET leitet den Strom vom Drain zu Source.
Die Eingangsschaltung hinter der Stromeingangsbuchse beugt sich nicht diesem Schema. Da sind die beiden MOSFETs immer antiseriell verbaut, also einer von beiden "verkehrt herum". Auf den ersten Blick macht das keinen Sinn, aber es hat eben doch Sinn, weil zwei Sonderfälle auftreten können:
1) Das Netztteil wird verpolt (kann bei manchen Universalnetzteilen leicht passieren)
2) Wenn das Netzteil eingesteckt, aber stromlos ist, dann soll der Strom des vollen Akkus nicht rückwärts ins Netzteil abfließen können.
Um diese beiden Funktionen zu realisieren, muss einer der beiden MOSFETs umgekehrt gepolt eingebaut werden. Grund dafür ist die immer im MOSFET vorhandene Bulk-Diode.
Im Normalbetrieb per Netzteil macht sich das nahezu gar nicht bemerkbar, denn anders als bipolare Transistoren können MOSFETs ganz prima auch mit vertauschtem Drain und Source betrieben werden.
Aber wie gesagt: Wenn wir die Eingangsstufe mal außer Acht lassen und uns Schaltwandler ansehen, dann ist Drain des Uppers immer mit 19V verbunden und sein Source mit der Spule. Also in ganz normaler Schaltvariante.
Und zum Low-Side-MOSFET, hoffe ich jetzt nicht zu verwirren, aber im Grunde wird der in reverser Richtung betrieben!
Ja, wirklich! Auch wenn sich das erst auf den zweiten Blick erschließt.
Sein Source ist mit Masse verbunden. Und sein Drain mit der Spule.
In dem Moment, wo der Upper sperrt, ist die Spule die Spannungsquelle, deren Ausgang Strom für die Last liefert.
Dieser Storm fließt nun durch die Last nach Masse und der nun leitende Low-side-MOSFET lässt den Strom von Masse nun in Richtung Drian und somit zum Spuleneingang fließen.
Der Strom fließt bei diesem MOSFET also vom Source zum Drain und somit inreverser Richtung; umgekehrt, als man es normalerweise erwarten würde.
In dem Moment, wo der Low-side-MOSFET leitet, ist der Spuleneingang der negativste Punkt in der Schaltung. Negativer noch, als Masse.
Nun soll es aber tunlichst kein negativeres Potenzial geben, als Masse. Darum steuert der Low-side-MOSFET niederohmig durch und verbindet somit beide Potentiale.
Die Spannung ist damit dann nahezu gleich (Millivöltchen Differenz), aber der Strom fließt vom Source durch den MOSFET zum Drain.
(Hoffe nicht mehr verwirrt als aufgeklärt zu haben.)
Gut zu wissen ist, dass die Mosfets PCKH2BB und M3058M offenbar die Eingangs-Mosfets sind. Diesen Rückschluss ziehe ich auf Grund deiner Spannungs-Messungen und auf Grund des "DC Board", welches offenbar die Buchse mit den Mosfets verbindet. Bin mir aber nicht sicher ob der Grüne Widerstand daneben der Shunt sein könnte.
Ja, offenkundig.
Die antiserielle Zusammenschaltung der beiden MOSFETs, mit dahinter liegendem Shunt, passt nur zur Eingangsstufe.
Dazu braucht man keine Spannungsmessung, das erschließt sich schon beim Betrachten der Leiterbahnen.
Wie auch immer ist das ein guter Startpunkt, um von dort aus auf Durchgang bzw. Widerstand zu den anderen Spulen zu testen.
In der Tat!
Eigentlich hatte ich Scrabble36 darum gebeten, Messungen mit dem Durchgangsprüfer durchzuführen. Von Spannungsmessungen war gar keine Rede.
Davon abgesehen, hat Scrabble36 an den ganzen MOSFETs über den Spulen im Bild "CPU Seite.jpg" gar nicht gemessen.
Übrigens sollte dieser ganze Wärmeleit-Matsch mal entfernt und alles gereinigt werden.
Man sucht keine Fehler bevor man gereinigt hat. Man will ja sehen, was los ist.
Besonders verdächtig ist für mich immer noch der Bereich mit den ~15V auf der "USB-C-Seite". Mir erschließt sich nicht, wie die Spannung da zustande kommt
Mit USB-C habe ich zwar bislang noch nie zu tun gehabt, aber generell kann USB-C ja deutlich höhere Spannungen, als das gute, alte, simple, zuverlässige, idiotensichere, 5V-basierende USB.
Am USB-C-Port können laut Spezifikation variable Spannungen bis zu 20V auftreten.
Die Spannungen von grob 15V in den Bildern ist allerdings weit weg von den USB-Ports, was mich gerade verdutzt.
Mitten auf dem Mainboard würde ich eigentlich keine solche Spannung erwarten.
Um das aber genau beurteilen zu können, wäre der Schaltplan sehr nützlich.
Ich persönlich würde im Moment alle Spannungen ignorieren und erst einmal den Durchgangsprüfer bemühen.